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Abstract

We prove an entanglement area law for a class of 1D quantum systems involving infinite-
dimensional local Hilbert spaces. This class of quantum systems include bosonic models such
as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial
dimension. Our proof relies on new results concerning the robustness of the ground state and
spectral gap to the truncation of Hilbert space, applied within the approximate ground state
projector (AGSP) framework from previous work. In establishing this area law, we develop a
system-size independent bound on the expectation value of local observables for Hamiltonians
without translation symmetry, which may be of separate interest. Our result provides theoretical
justification for using tensor network methods to study the ground state properties of quantum
systems with infinite local degrees of freedom.

1 Introduction

It has long been conjectured that for a wide range of quantum systems described by gapped local
Hamiltonians, the entanglement entropy with respect to any bipartition of the system scales as
the boundary area. Such entanglement entropy scaling is known as the entanglement area law.
An entanglement area law for the ground state of 1D quantum spin systems was first proved in the
seminal paper by Hastings [18], and the scaling with respect to the spectral gap was improved by later
work such as [5, 6]. Entanglement area laws have also been proved for degenerate ground state and
low-lying eigenstates [7]. Limited results are also available for higher-dimensional quantum systems,
especially for the case where the Hamiltonian is frustration-free [2, 4]. For 1D systems, whether a
quantum state satisfies an entanglement area law is an important criterion for determining whether it
can be approximated by a matrix-product state[16], which is a key component in the density-matrix
renormalization group (DMRG) algorithm [34] (see also [17]). Using theoretical tools constructed
for proving the 1D area law, a polynomial time algorithm for computing the ground state of 1D
gapped local Hamiltonians was proposed in [24].

The aforementioned results are all proved in the setting of quantum spin systems, i.e., each lattice
site is associated with a finite-dimensional local Hilbert space. However, there are many quantum
systems of practical interest that involve infinite-dimensional local Hilbert spaces. Examples of such
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include bosonic systems and gauge theories. When a quantum system involves bosons, each bosonic
mode corresponds to an infinite-dimensional local Hilbert space, due to the fact that its occupation
number can be arbitrarily large. A similar situation arises when we consider lattice gauge theories
(LGTs), with the Hamiltonians constructed according to [22]. Given a fixed lattice discretization
of a gauge theory, each gauge link (an edge of the lattice) has a local Hilbert space that is spanned
by all the elements of the symmetry group, which is infinite dimensional when the symmetry group
contains infinitely many elements. The gauge theories that are of the greatest interests, i.e. the U(1),
SU(2), and SU(3) theories, all fall into this category.

When the dimension of the local Hilbert space is infinite, the area law proof techniques developed
for the finite dimensional case cannot be directly applied. By the state-of-the-art 1D area law
result in [6], across a given cut in a 1D system described by a gapped local Hamiltonian, the
entanglement entropy scales as O(∆−1 log3(d)) where d is the local Hilbert space dimension and
∆ is the spectral gap. This becomes infinity when the local Hilbert space is infinite-dimensional.
Moreover, in quantum spin systems all local Hamiltonian terms can be rescaled to have operator
norm at most 1, whereas in the models we consider in this work the local Hamiltonian terms
can be unbounded, making it impossible to normalize them. For certain non-interacting bosonic
systems, such as those involving infinite-dimensional local Hilbert spaces but are exactly solvable,
the entanglement area law has been proven in Refs. [12, 13, 14] (see also [15]). However, a general
methodology remains elusive for establishing area laws for quantum systems with infinite local
degrees of freedom.

Main result. In this work we prove an entanglement area law for a class of 1D quantum systems that
involve bosons or arise from gauge theories, using the approximate ground state projector (AGSP)
framework developed in [5]. These quantum systems involve infinite-dimensional local Hilbert spaces.
Examples of such quantum systems include the Hubbard-Holstein model, U(1) and SU(2) LGTs, all
of which are defined on a 1D chain. For these models, we can introduce a notion of local quantum
number, which is the occupation number in the bosonic case, the electric field value in the U(1) LGT,
and the total angular momentum in the SU(2) LGT. Informally, our main result can be summarized
as follows:

Theorem (Main result (informal)). For the gapped ground state of the 1D Hubbard-Holstein model,
or the 1D U(1) or SU(2) LGTs, the entanglement entropy across a cut scales like O(poly(∆−1)),
where ∆ is the spectral gap, assuming that all coefficients in the Hamiltonian remain constant. In
particular, this entanglement entropy scaling is independent of the system size.

A more precise statement can be found in Theorem 20. This result generalizes to other models
as long as certain assumptions about the growth of the local Hilbert space dimension and quantum
numbers are satisfied. We discuss these assumptions in detail in Section 3.

Proof strategy. Our result utilizes a local quantum number tail bound recently obtained in [31].
Essentially, this tail bound tells us that for the class of quantum systems we study, a spectrally
isolated energy eigenstate can be well-approximated by a truncated state with low local quantum
numbers. This suggests that we may choose an effective local Hilbert space with finite dimensions
and thereby apply the framework developed in [5, 6]. To implement this proof strategy, we need
to apply truncation to the local Hilbert space and by extension to the Hamiltonian terms, on each
lattice site close to the cut. Through this procedure we will obtain a different Hamiltonian than the
one we started out with; however, we show in Theorem 12 that the truncation changes the ground
state only by an exponentially small amount. This is similar to what is known as the robustness
theorem [6, Theorem 6.1]. Because of this we can show that the AGSP framework developed in
[6] is robust to this truncation. By the “off-the-rack” lemma with approximate target space in [1],
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generalized from the case [5] of exact target state, we will prove the entanglement area law for our
class of unbounded quantum systems.

As an intermediate step in our proof, we develop tools to show that the mean absolute value
of the local quantum number can be bounded independently of the system size for many quantum
systems without translation symmetry. We state the general version of our bound in Lemmas 7 and
8 and later specialize it to the Hubbard-Holstein model (Corollary 10) and U(1) and SU(2) LGTs
(Corollary 9) with open boundary conditions.

In proving area laws for unbounded quantum systems, it is tempting to plug the eigenstate tail
bound from [31] directly into the area law result for spin systems [6]. However, such a naive strategy
does not seem to work here. The main reason is that the tail bound from [31] only guarantees
the proximity of the quantum states before and after truncation, but not the proximity of the
corresponding entanglement entropies. In the finite-dimensional setting, one could invoke the Fannes’
inequality to estimate the entanglement entropy difference [33, 35], but its explicit dependence on
the dimension of the Hilbert space will ruin the area law scaling for unbounded quantum systems. In
fact, the main contribution of our paper is to give a careful truncation of the local Hilbert space that
does not blow up entanglement entropy of the ground state, overcoming the technical difficulties
mentioned above.

Tensor network methods have been extensively applied to studying LGTs to obtain interesting
numerical results [8, 9, 10, 11, 26, 27, 28, 29]. Entanglement area law is a prerequisite for the ground
state to be efficiently approximable using a tensor network state, and hence a rigorous proof in the
setting of LGTs is crucial to the theoretical foundation of these numerical results. Moreover, if more
mathematical rigor is needed, we might want a provably accurate algorithm to compute the ground
state of gauge theories in 1D, along the line of the rigorous renormalization group (RG) method
proposed in Ref. [7]. The current work can be seen as a first step towards that goal, since many of
the proof techniques, such as the AGSP, are also useful components of the rigorous RG method.

Organization of the paper. The rest of the paper is organized as follows: in Section 2 we will briefly
introduce the class of models we consider, including the 1D gauge theories and the Hubbard-Holstein
model. In Section 3 we will discuss the common structure of these models that enables a proof of
area law. In Section 4 we will discuss properties of the ground state that can be used to truncate the
infinite-dimensional local Hilbert space. In Section 5 we prove that the local quantum numbers have
a mean absolute value that can be bounded independently of the system size. This fact removes
an otherwise extra assumption in the proof of the area law. In Section 6 we will demonstrate that
the ground state is robust to such truncations using properties derived in the previous section. In
Section 7 we prove our main result of the entanglement area law scaling, using an “off-the-rack”
lemma slightly tighter than the one from [1]. We conclude our paper in Section 8 with a brief
summary of the main result and a selection of questions for future work.

2 1D gauge theories and bosonic systems

In this section we first introduce some specific quantum systems that we will study, and then extract
the common structure of these systems. These quantum systems are all discussed in [31, Section I].
We first consider the 1D Hubbard-Holstein model [19], a model describing electron-phonon interac-
tions.

The Hubbard-Holstein model. This model is defined on a 1D chain of N nodes. Each node in the
lattice, indexed by x, contains two fermionic modes (spin up and down) and a bosonic mode. The
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Hamiltonian is
H = Hf +Hfb +Hb, (1)

where Hf is the Hamiltonian of the Fermi-Hubbard model [21] acting on only the fermionic modes,
and

Hfb = g

N
∑

x=1

(b†x + bx)(nx,↑ + nx,↓ − 1), Hb = ω0

N
∑

x=1

b†xbx, (2)

are the boson-fermion coupling and purely bosonic parts of the Hamiltonian respectively. Here, bx
is the bosonic annihilation operator on node x, and nx,σ is the fermionic number operator for node
x and spin σ.

For gauge theories, we consider the Hamiltonian formulation of the U(1) and SU(2) LGTs [22]
in one dimension. The U(1) LGT is also known as the Schwinger model.

The U(1) lattice gauge theory. The system consists of a chain of N nodes with N − 1 links
between adjacent nodes. We denote each node by x, and the links by the node on its left end. The
links are sometimes called gauge links.

On each node x we have a fermionic mode whose annihilation operator is denoted by φx. Each
link consists of a planar rotor, whose configuration can be described by an angle θ ∈ [0, 2π]. The
local Hilbert space is the vector space of square-integrable functions on U(1). An orthonormal basis
of the local Hilbert space can be chosen to be the Fourier basis. More specifically we denote by |k〉
the Fourier mode (2π)−1/2eikθ, and {|k〉 : k ∈ Z} form the basis we need.

We further define the operators Ex and Ux, which act on the vector space of the links, through

Ex |k〉 = k |k〉 , Ux |k〉 = |k − 1〉 . (3)

The Hamiltonian for U(1) LGT can then be described in terms of these operators via

H = HM +HGM +HE ,

HM = gM
∑

x

(−1)xφ†xφx,

HGM = gGM

∑

x

(φ†xUxφx+1 + φ†x+1U
†
xφx),

HE = gE
∑

x

E2
x.

(4)

The three terms HM , HGM , HE describe the fermionic mass (using staggered fermions [22]), the
gauge-matter interaction, and the electric energy respectively.

The SU(2) lattice gauge theory. We only consider the theory using the fundamental represen-
tation of SU(2), as done in [10]. The model is still defined on a 1D chain consisting of nodes and
links, similar to the U(1) case. The Hamiltonian also takes the form (4). One difference is that
in the SU(2) theory, each node x now contains two fermionic modes, whose annihilation operators
are denoted by φlx, l = 1, 2. We write φx = (φ1x, φ

2
x)

⊤. Each gauge link consists of a rigid rotator
whose configuration is described by an element of the group SU(2) [22]. For the link Hilbert space,
which is the vector space of square-integrable functions with respect to the Haar measure on SU(2),
we can construct an orthonormal basis that consists of the quantum states |jmm′〉, where j,m,m′

are simultaneously either integers or half-integers with −j ≤ m,m′ ≤ j. Here j is the total angular
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momentum of the rotator, and m, m′ are the components of angular momentum along the z-axis in
the body-fixed and space-fixed coordinate systems.

The Hamiltonian takes the form (4), and is invariant under SU(2) transformations acting either
from the left or from the right, which correspond to rotations of the rigid rotator with respect to
space-fixed or body-fixed axes respectively. The operators E2

x and Ux are different from the U(1)
case. The operator E2

x is defined through

E2
x |jmm′〉 = j(j + 1) |jmm′〉 . (5)

Because φx has two components, where each component is a fermionic mode, Ux is a 2 × 2 matrix,
where each of the 4 matrix entries is an operator acting on the link space

Ux =

(

U11
x U12

x

U21
x U22

x

)

. (6)

An important property that we will use later is

〈j1m1m
′
1|U ll′

x |j2m2m
′
2〉 = 0, if |j1 − j2| > 1/2, ‖U ll′

x ‖ ≤ 1, (7)

which follows from rules for the addition of angular momentum, given that Ux,ni
transforms as the

j = 1/2 representation of SU(2). Here ‖O‖ denotes the spectral norm of an operator O.

3 The abstract model

We now consider a more general class of Hamiltonians that include all the previously discussed
examples. We consider a 1D system consisting of N sites indexed by x = 1, 2, . . . , N . In the context
of the Hubbard-Holstein model, each site x contains one fermionic mode and one bosonic mode. In
the context of the LGTs, each site x contains a node x and the gauge link x to the right, except
for the last site which only contains a node (unless periodic boundary conditions are assumed). As
discussed in Section 2, each node contains one or two fermionic modes for the U(1) and SU(2) cases
respectively. The Hamiltonian is geometrically local:

H = H1 +H2 + · · ·+HN , (8)

where each Hx acts on two adjacent sites x and x+ 1.
The local vector spaces are allowed to be infinite-dimensional, but we need to keep track of

which part of the space is relevant to our problem. To this end, we introduce the notion of the local
quantum number.

Definition 1. For any 1 ≤ x ≤ N , we define an integer local quantum number λx and corresponding
Hermitian observable Ox acting only on the local Hilbert space x, such that Ox |λx〉 = λx |λx〉. We
further define the following:

1. Let projector Π
(x)
S be defined for any S ⊂ R such that Π

(x)
S |λx〉 = |λx〉 if and only if λx ∈ S.

Further, we define Π
(x)

S = I −Π
(x)
S to be the projector onto the complement of S.

2. We define for cutoff Λ ∈ R the local Hilbert space dimension of a site x to be d(Λ) =

rank(Π
(x)
[−Λ,Λ]). For simplicity we use the same cutoff Λ for all sites throughout the paper

where truncation is needed.
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3. We define for site x the norm of the local Hamiltonian Hx constrained to [−Λ,Λ] to be N (Λ) =

‖HxΠ
(x)
[−Λ,Λ]‖ where ‖ · ‖ is the spectral norm.

Often the local observables of interest in a physical problem may have noninteger eigenvalues. If
the eigenvalues are all integer multiples of a fixed number, up to some constant shift, then simply
shifting and rescaling the observable can get the local quantum numbers we want. Otherwise we can
apply a non-linear transformation to the local observable to map all eigenvalues to integers. Also,
henceforth we do not distinguish between Ox and λx and will sometimes use λx as an operator.

Using the notation of Definition 1, we can easily articulate a fundamental assumption for our
work, namely, the norm of the local Hamiltonian as well as the local Hilbert space dimension grow
modestly with the cutoff Λ. This assumption is stated formally below.

Assumption 2 (Local quantum numbers). The scaling of the maximum local dimension d(Λ) and
the norm of the local Hamiltonian Hx constrained to the local quantum number range [−Λ,Λ] obey

d(Λ), N (Λ) = O(poly(Λ)). (9)

More conditions are needed for us to handle the infinite dimensional local Hilbert space. Following
[31], we assume that:

Assumption 3 (Growth of local quantum numbers). There exist non-negative real-valued constants
χ and r such that, for any x, the Hamiltonian can be decomposed as

H = H
(x)
W +H

(x)
R , (10)

where H
(x)
W and H

(x)
R satisfy (for Π

(x)
λ ≡ Π

(x)
{λ})

Π
(x)
λ H

(x)
W Π

(x)
λ′ = 0, if |λ− λ′| > 1, (11a)

‖H(x)
W Π

(x)
[−Λ,Λ]‖ ≤ χ(Λ + 1)r, (11b)

[H
(x)
R ,Π

(x)
λ ] = 0 for all λ, (11c)

for all x = 1, 2, . . . , N .

We note that the H = H
(x)
W +H

(x)
R is a decomposition of the entire Hamiltonian for each site x,

and neither H
(x)
W nor H

(x)
R is necessarily local.

These assumptions are satisfied by many physical models of interest. For example, for the
Hubbard-Holstein model we can take our local quantum number to be the bosonic occupation
number of each of the sites. Furthermore, we can choose for any x [31]

H
(x)
W = g(b†x+bx)(nx,↑+nx,↓−1), H

(x)
R =

∑

x′

ω0b
†
x′bx′+

∑

x′ 6=x

g(b†x+bx)(nx,↑+nx,↓−1)+Hf . (12)

If we take our local quantum number, λx, to be the phonon number at a particular site with
Ox = b†xbx we then see that (11a) holds because the bosonic ladder operators only couple between
adjacent occupancy states. Using the commutation properties of bx and b†x it is easy to see that
(11b) holds with r = 1/2 and χ ≤ 2g. Since bosonic ladder operators commute across different sites,
we have that (11c) also holds for this model. A similar decomposition can be shown to exist for
U(1) and SU(2) lattice gauge theories in one spatial dimension.

While such decompositions exist for many cases of interest, they are obviously not necessarily
unique. In fact, the choice of decomposition may potentially impact the value of r and χ that
appears in (11b). But for our purpose of proving area law, it suffices to take any such decomposition
of the Hamiltonian.
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4 Truncating the local Hilbert space

Although we consider the setting where the local Hilbert spaces are infinite dimensional, we can
approximate spectrally isolated eigenstates with states containing low local quantum numbers. This
fact is made rigorous in [31, Theorem 12] which we restate here in a slightly modified way:

Theorem 4 (Quantum number distribution tail bound). Let H be a Hamiltonian satisfying As-
sumption 3. Let |Ψ〉 be an eigenstate of H corresponding to an eigenvalue ε with multiplicity 1, and
ε be separated from the rest of the spectrum of H by a spectral gap ∆. Moreover, for a fixed site x
we assume local quantum number |λx| has a finite expectation value:

∑

λ

|λ| 〈Ψ|Π(x)
λ |Ψ〉 = λ̄x <∞,

we then have that

‖(I −Π
(x)
[−Λ,Λ]) |Ψ〉 ‖ ≤ e

−Ω
(√

χ−1∆(Λ1−r−(2λ̄x)1−r)
)

.

We will further need to apply this result to bound the error that emerges from applying the
truncation bound to many sites. The following corollary provides such a result in a convenient form.

Corollary 5. Let Π′ =
∏ℓ+s

x=ℓ+1Π
(x)
[−Λ,Λ], then under the same assumption as in Theorem 4, we have

‖(I −Π′) |Ψ〉 ‖ ≤ √
se

−Ω
(√

χ−1∆(Λ1−r−(2λ̄)1−r)
)

,

where λ̄ = maxℓ<x≤ℓ+s λ̄x.

Proof. Proof follows from Theorem 4 via a straightforward application of the triangle inequality and
the sub-multiplicative property of the spectral norm:

‖(I −Π′) |Ψ〉 ‖ =
√

〈Ψ| (I −Π′)2 |Ψ〉 =
√

〈Ψ| (I −Π′) |Ψ〉

=

√

√

√

√

ℓ+s
∑

x=ℓ+1

〈Ψ|
x−1
∏

x′=ℓ+1

Π
(x′)
[−Λ,Λ](I −Π

(x)
[−Λ,Λ]) |Ψ〉

≤

√

√

√

√

ℓ+s
∑

x=ℓ+1

‖(I −Π
(x)
[−Λ,Λ]) |Ψ〉 ‖ ≤ √

se
−Ω

(√
χ−1∆(Λ1−r−(2λ̄)1−r)

)

. (13)

A final important consequence of Theorem 4 is a bound on the quantity ‖Π′H(I−Π′) |Ψ〉 ‖ where
Π′ is defined as in Corollary 5. We use the above corollary to derive such a bound below.

Corollary 6. Let Π′ =
∏ℓ+s

x=ℓ+1Π
(x)
[−Λ,Λ], then under the same assumption as in Theorem 4, we have

‖Π′H(I −Π′) |Ψ〉 ‖ ≤ s3/2N (Λ)e
−Ω

(√
χ−1∆(Λ1−r−(2λ̄)1−r)

)

,

where λ̄ = maxℓ<x≤ℓ+s λ̄x.
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Proof. We only need to use Corollary 5 along with a bound for ‖Π′H(I −Π′)‖. We have

Π′H(I −Π′) =

N
∑

x=1

Π′Hx(I −Π′) =

ℓ+s
∑

x=ℓ+1

Π′Hx(I −Π′). (14)

The second equality is because Π′Hx(I −Π′) = Π′(I −Π′)Hx = 0 if x /∈ {ℓ+1, . . . , ℓ+ s}. Therefore

‖Π′H(I −Π′)‖ ≤
ℓ+s
∑

x=ℓ+1

‖Π′Hx(I −Π′)‖ ≤
ℓ+s
∑

x=ℓ+1

‖Π(x)
[−Λ,Λ]Hx‖ ≤ sN (Λ). (15)

We remark that the bound in the above corollary does not depend on the system sizeN . However,
there is a dependence on λ̄, an upper bound on the mean absolute value of the local quantum numbers
on sites ℓ+1, ℓ+2, . . . , ℓ+ s. One might worry that λ̄ will show up as an independent parameter in
our expression of the entanglement entropy. However, we will show in the next section that for the
ground states of U(1) and SU(2) LGTs as well as the Hubbard-Holstein model, λ̄ depends only on
the coefficients in the Hamiltonian, and is thus independent of the system size.

5 Bounding the mean absolute value of the local quantum

number

In this section we prove bounds on the mean absolute value λ̄x = 〈|λx|〉 of the local quantum numbers
in the ground states of U(1) and SU(2) LGTs, as well as the Hubbard-Holstein model. λx here is
the local quantum number of site x and 〈·〉 denotes the ground state expectation value. We will
drop the subscript x in this section because we will focus on only a single bosonic mode or gauge
link. These bounds are independent of the system size and only depend on the coefficients in the
Hamiltonians.

In the following discussion, we view our lattice models as a bipartite system, where a subsystem
A is a gauge link or bosonic mode, and a subsystem B is the rest of the system. We then bound
〈|λ|〉, where λ is the local quantum number for A, using the variational principle.

Lemma 7. Consider a bipartite system with Hilbert space H = HA ⊗ HB, where HA and HB

are the Hilbert spaces for subsystems A and B respectively. Let H = HA + HAB + HB be the
Hamiltonian, where HA acts non-trivially only on A, and HB on B. Let |Ψ〉 be the ground state of
H. Furthermore, we assume that there exists an operator KA acting non-trivially only on A such
that |HAB| � KA. Then we have

〈Ψ| (HA −KA) |Ψ〉 ≤ 〈ΨA| (HA +KA) |ΨA〉 , (16)

for any |ΨA〉 ∈ HA. Here � denotes the partial order induced by the convex cone of positive semi-

definite operators and |O| =
√
O†O for operator O.

Proof. Let |ΨP 〉 = |ΨA〉 |ΨB〉 be a product state, where |ΨB〉 ∈ HB is the ground state of HB, and
|ΨA〉 ∈ HA is chosen arbitrarily. Then because |Ψ〉 is the ground state of H we have

〈Ψ|H |Ψ〉 ≤ 〈ΨP |H |ΨP 〉 . (17)
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For 〈Ψ|H |Ψ〉 we have

〈Ψ|H |Ψ〉 = 〈Ψ|HA|Ψ〉+ 〈Ψ|HAB|Ψ〉+ 〈Ψ|HB|Ψ〉
≥ 〈Ψ|HA|Ψ〉 − 〈Ψ|KA|Ψ〉+ 〈Ψ|HB|Ψ〉
≥ 〈Ψ| (HA −KA) |Ψ〉+ 〈ΨB|HB|ΨB〉 ,

(18)

where in the first inequality we have used |HAB| � KA and in the second inequality we have used
〈Ψ|HB|Ψ〉 ≥ 〈ΨB|HB|ΨB〉, which is true because |ΨB〉 is chosen to be the ground state of HB.

For 〈ΨP |H |ΨP 〉 we have

〈ΨP |H |ΨP 〉 = 〈ΨP |HA|ΨP 〉+ 〈ΨP |HAB|ΨP 〉+ 〈ΨB|HB|ΨB〉
≤ 〈ΨP | (HA +KA) |ΨP 〉+ 〈ΨB|HB|ΨB〉
= 〈ΨA| (HA +KA) |ΨA〉+ 〈ΨB|HB|ΨB〉 .

(19)

Combining (17), (18), (19), we have (16).

Lemma 8. Under the same assumptions as in Lemma 7, we further let Ξ be a Hermitian operator
on A. Assume that HA −KA � L(|Ξ|) where L(x) is a convex non-decreasing function for x ∈ R

+

satisfying L(x) → +∞ when x→ +∞. Then we have

〈Ψ||Ξ||Ψ〉 ≤ L−1 (〈Ψ| (HA −KA) |Ψ〉) ≤ L−1

(

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉
)

. (20)

Proof. By the assumption that HA −KA � L(|Ξ|) and (16), we have

〈Ψ|L(|Ξ|)|Ψ〉 ≤ 〈ΨA| (HA +KA) |ΨA〉 .
Because L is convex, by Jensen’s inequality L(〈Ψ||Ξ||Ψ〉) ≤ 〈Ψ|L(|Ξ|)|Ψ〉. Because L is non-
decreasing and |ΨA〉 can be arbitrarily chosen, we have (20).

Note that the right-hand side of (20) is independent of the subsystem B. This allows us to
bound the mean absolute value of the local quantum number in the lattice models in a way that is
independent of the system size. We will now apply this lemma to the case of gauge theories and the
Hubbard-Holstein model.

First, for U(1) and SU(2) gauge theories with the Hamiltonian defined in (4), we take A to be a
gauge link x. Then we let

HA = gEE
2
x, HAB = gGM (φ†xUxφx+1 + φ†x+1U

†
xφx), HB = H −HA −HB.

A nice feature about this Hamiltonian is that HAB is bounded: ‖HAB‖ ≤ 2|gGM |. Therefore we can
simply choose KA = 2|gGM |. The local quantum number λx in this case is the electric field value in
the U(1) case and the total angular momentum in the SU(2) case. We recall that E2

x = λ2x for U(1)
LGT and E2

x = λx(λx +1) � λ2x for SU(2) LGT (for the latter see (5), also λx � 0 for SU(2) LGT).
Therefore we have

HA −KA � gEλ
2
x − 2|gGM |

for both cases. For the right-hand side of (20) we have

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉 = 2|gGM |,

where the minimum is attained by |ΨA〉 = |0〉. Combining the above facts, we apply Lemma 8 to
get:

9



Corollary 9. For the U(1) and SU(2) LGTs with the Hamiltonian defined in (4), let λx be the local
quantum number on gauge link x, then 〈|λx|〉 ≤ 2

√

|gGM |/gE, where 〈·〉 denotes the ground state
expectation value.

Then let us consider the Hubbard-Holstein model with the Hamiltonian described in (1). We let
A be a bosonic mode x, and let B be the rest of the system. We have

HA = ω0b
†
xbx, HAB = g(b†x + bx)(nx,↑ + nx,↓ − 1), HB = H −HA −HAB .

Here HAB is no longer bounded, but we can still construct a KA such that |HAB | � KA. To simplify
the discussion we introduce the position and momentum operators X and P :

X =
1√
2
(b†x + bx), P =

i√
2
(b†x − bx).

Then HAB =
√
2gX(nx,↑ + nx,↓ − 1). Because ‖nx,↑ + nx,↓ − 1‖ ≤ 1, we can define

KA =
√
2|g||X |,

which satisfies |HAB| � KA. With this choice of KA we have

HA −KA =
ω0

2
(X2 + P 2 − 1)−

√
2|g||X |

� ω0

2
(X2 + P 2 − 1)− ω0

4
X2 − 2g2

ω0

� ω0

4
(X2 + P 2 − 1)− ω0

4
− 2g2

ω0

=
ω0

2
b†xbx − ω0

4
− 2g2

ω0
.

The local quantum number here is the bosonic occupation number, which has to be non-negative.
Therefore

HA −KA � ω0

2
|λx| −

ω0

4
− 2g2

ω0
.

For the right-hand side of (20), we have

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉 ≤ 〈0|
(

ω0b
†
xbx + 2|g||X |

)

|0〉 = 2|g|√
π
,

where we have used the analytic solution of the ground state of the harmonic oscillator in deriving
the equality. Combining these results with Lemma 8 we have:

Corollary 10. For the Hubbard-Holstein model with the Hamiltonian defined in (1), let λx be the
local quantum number on site x, then

〈|λx|〉 ≤
1

2
+

4|g|
ω0

√
π
+

4g2

ω2
0

,

where 〈·〉 denotes the ground state expectation value.
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6 Robustness of the ground state to truncation

In this section, we show that the ground state, the ground state energy, and the spectral gap are all
robust to the truncation of the Hamiltonian, in a way that we will specify later. Following [6] we
focus on the s sites from ℓ+1 to ℓ+ s. For convenience we relabel the sites so that the original site
x is now labelled x− ℓ. The Hamiltonian can be rewritten as

H = HL +H1 + · · ·+Hs +HR, (21)

where HL =
∑

x≤0Hx and HR =
∑

x≥s+1Hx. We need to shift each Hamiltonian term (HL, H1,
H2, . . . , Hs, HR) by a constant to ensure that they are all positive semi-definite. As in [6] we look at
the entanglement entropy across a cut between sites s/2 and s/2+ 1. If ‖Hx‖ ≤ 1, the local Hilbert
space dimension is d and the spectral gap is ∆, then it is known that the entanglement entropy
scales as O(log3(d)/∆) [6, Theorem 6.2].

Now we want to consider the case where the local Hilbert space dimension is infinite. This compels
us to truncate the local Hilbert space, and consequently the local Hamiltonian terms Hi as well.
We denote the truncation threshold, defined according to the local quantum number introduced in
Section 3, by Λ, and correspondingly the truncated Hamiltonian term by H ′

x. The truncated Hilbert
space dimension is d(Λ) and the truncated local term has a norm that is upper bounded by N (Λ).

6.1 The two truncations

We first clarify in more detail what we mean by truncating the local Hilbert space. The original
Hilbert space isH = HL⊗H1⊗· · ·Hs⊗HR. We consider a subspaceH′ = HL⊗H′

1⊗· · ·H′
s⊗HR ⊆ H,

where each Hx has dimension d(Λ). We denote by Π′
x the projection operator onto H′

x, and define

Π′ = IL ⊗Π′
1 ⊗ · · ·Π′

s ⊗ IR,

which is the projection operator onto H′. IL and IR are the identity operators on HL and HR

respectively. The truncated Hamiltonian is a Hermitian operator H ′ defined to be the restriction of
Π′HΠ′ to the subspace H′, by which we mean that H ′ maps elements from H′ to H′. We do not
directly define H ′ to be Π′HΠ′ because that would introduce an artificial eigenvalue 0 corresponding
to the part of the Hilbert space that is truncated out. We can write H ′ out as

H ′ = H ′
L +H ′

1 + · · ·+H ′
s +H ′

R, (22)

where each H ′
x is the restriction of Π′HxΠ

′ to the subspace H′, and the same is true for H ′
L and

H ′
R. Locality is preserved in this truncation as H ′

x still acts non-trivially on sites x and x + 1, H ′
L

on sites to the left of and including site 1, and H ′
R on sites to the right of site s.

The second truncation we consider comes from Ref. [6]. We adopt the definition in [6], for a
Hermitian operator A,

A≤t = APt + ‖APt‖(I − Pt), (23)

where Pt is the projection operator onto the subspace spanned by eigenvectors of A with eigenvalues
at most t. Then the second truncation yields the Hamiltonian

H ′′ = (H ′
L +H ′

1)
≤t +H ′

2 + · · ·+H ′
s−1 + (H ′

s +H ′
R)

≤t. (24)

The goal here is to show that these two truncations (i) preserve the spectral gap up to a constant
factor, and (ii) preserve the ground state up to an error exponentially small in Λ and t.
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6.2 Truncation robustness of the ground state and energy

Definition 11. For a self-adjoint operator A bounded from below, define the sequence ǫ0(A) ≤
ǫ1(A) ≤ . . . as follows. Let σess(A) be its (closed) essential spectrum and let K ∈ N0 ∪ {∞} be
the number of eigenvalues in [−∞,minσess(A)), including multiplicity. For k < K, let ǫk(A) be
the k-th eigenvalue with multiplicity (K eigenvalues as we start from k = 0), and for k ≥ K let
ǫk(A) = minσess(A).

Each ǫk(A) is in the spectrum1 ofA but is not necessarily an eigenvalue when ǫk(A) = minσess(A).
The min-max principle [30, Theorem 4.10] states that for k ∈ N0,

ǫk(A) = inf
φ0,...,φk∈D(A)

sup
{

〈ψ|A|ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

, (25)

where D is the domain of A.
Writing ǫk = ǫk(H), recall that we assume that the Hamiltonian H has a non-degenerate lowest

eigenvalue ǫ0 (the ground state energy), with a unique ground state |ψ0〉. We also assume that ǫ0 is
separated from the rest of the spectrum by a gap ∆ = ǫ1 − ǫ0.

For truncated Hamiltonians H ′ and H ′′, we will prove that there exist unique ground states
|ψ′

0〉 and |ψ′′
0 〉, corresponding to non-degenerate lowest eigenvalues ǫ′0 and ǫ′′0 , for the two truncated

Hamiltonians respectively. Write ǫk = ǫk(H), ǫ′k = ǫk(H
′), and ǫ′′k = ǫk(H

′′) and ∆′ = ǫ′1 − ǫ′0,
∆′′ = ǫ′′1 − ǫ′′0 .

Theorem 12 (Robustness to truncations). Let Π′ be the projection operator onto H′. Let δ1 =
‖(I −Π′) |ψ0〉 ‖, δ2 = ‖Π′H(I −Π′) |ψ0〉 ‖, and

δ2
1− δ21

≤ ∆

18
, (26)

then for every cutoff of the local quantum number Λ > 0 there exists

T = O
(N (Λ)2

∆

(

ǫ0 + δ2/(1− δ21)

∆
+ 1

))

, (27)

such that for all t ≥ T ,

(i) For H ′′, there exists a non-degenerate ground state |ψ′′
0 〉 corresponding to the lowest eigenvalue

ǫ′′0 .

(ii) ∆′′ = Ω(∆);

(iii) The trace distance between |ψ0〉 and |ψ′′
0 〉 can be bounded as follows:

D(|ψ′′
0 〉 , |ψ0〉) ≤

√

2δ2
∆(1− δ21)

+ e−Ω(t/N (Λ)). (28)

Before we proceed with the proof we establish the following lemma, which follows from a similar
reasoning as in [6, Lemma 6.4] except we correct a minor mistake in their bound due to not taking
the global phase into account.

1I.e., the set of ǫ such that A− ǫI has no bounded inverse.
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Lemma 13 (Markov). Let H be a Hamiltonian with the lowest eigenvalue ǫ0 and all other eigen-
values at least ǫ1 > ǫ0, and assume |ψ0〉 is its unique ground state. Given a quantum state |φ〉 with
expectation value 〈φ|H |φ〉 = E, we have

| 〈φ|ψ0〉 |2 ≥ ǫ1 − E

ǫ1 − ǫ0
. (29)

Proof. Since the eigenstate |ψ0〉 is the unique ground state, the expectation value of H in any other
eigenstate must be at least ǫ1 by assumption. Using the fact that ǫ1−ǫ0 > 0, we have from Markov’s
inequality

E = 〈φ|H |φ〉 ≥ ǫ0| 〈φ|ψ0〉 |2 + ǫ1(1− | 〈φ|ψ0〉 |2). (30)

The result then follows by re-arranging the above expression.

The proof of Theorem 12 proceeds as follows: we first show that when we go from H to H ′, the
spectral gap is preserved and the ground state is changed by a small amount, and then show the
same is true when we go from H ′ to H ′′. In the first step we obtain:

Lemma 14. Let Π′ be the projection operator onto H′. Let δ1 = ‖(I − Π′) |ψ0〉 ‖, δ2 = ‖Π′H(I −
Π′) |ψ0〉 ‖. Then if δ1 < 1 and

δ2
1− δ21

≤ ∆

4
, (31)

we have the following

(i) For H ′, there exists a non-degenerate ground state |ψ′
0〉 corresponding to the lowest eigenvalue

ǫ′0.

(ii) ∆′ = Ω(∆).

(iii) The trace distance between |ψ0〉 and |ψ′
0〉 can be bounded as

D(|ψ′
0〉 , |ψ0〉) ≤

√

2δ2
∆(1− δ21)

. (32)

(iv) ǫ0 ≤ ǫ′0 ≤ ǫ0 +
2δ2
1−δ2

1

.

Here D(·, ·) denotes the trace distance.

Proof. By the min-max theorem (Equation 25), we have for k ∈ N0

ǫk = inf
φ0,...,φk∈H

sup
{

〈ψ|H |ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

≤ inf
φ0,...,φk∈H′

sup
{

〈ψ|H |ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

= ǫ′k ≤ minσess(H
′).

(33)

In particular we have ǫ1 ≤ ǫ′1 ≤ minσess(H
′). To establish a gap ∆′ we need an upper bound on ǫ′0:

ǫ0 = 〈ψ0|H |ψ0〉
= 〈ψ0|Π′HΠ′|ψ0〉+ 〈ψ0|(I −Π′)HΠ′|ψ0〉
+ 〈ψ0|Π′H(I −Π′)|ψ0〉+ 〈ψ0|(I −Π′)H(I −Π′)|ψ0〉

≥ ǫ′0‖Π′ |ψ0〉 ‖2 − 2‖Π′H(I −Π′) |ψ0〉 ‖+ ǫ0‖(I −Π′) |ψ0〉 ‖2

= ǫ′0(1− δ21)− 2δ2 + ǫ0δ
2
1 .

(34)
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As a result,

ǫ′0 ≤ ǫ0 +
2δ2

1− δ21
. (35)

The bound ǫ0 ≤ ǫ′0 is immediate from the variational principle (or (33)), so (iv) is established. The
assumption (31) then yields

ǫ′0 ≤ ǫ0 +∆/2 ≤ ǫ1 −∆/2 ≤ ǫ′1 −∆/2,

which implies ∆′ ≥ ∆/2, hence (ii). In particular it implies (i), that ǫ′0 is a simple eigenvalue with
eigenvector |ψ′

0〉.
To establish closeness between |ψ′

0〉 and |ψ0〉 we apply Lemma 13,

〈ψ′
0|ψ0〉2 ≥ ǫ1 − 〈ψ′

0|H |ψ′
0〉

ǫ1 − ǫ0
=
ǫ1 − ǫ′0

∆
= 1− ǫ′0 − ǫ0

∆
≥ 1− 1

∆

2δ2
1− δ21

,

where the last inequality follows from (35). Claim (iii) follows sinceD(|ψ′
1〉 , |ψ0〉) ≤

√

1− | 〈ψ′
1|ψ0〉 |2.

We are then ready to prove the main result.

Proof of Theorem 12. The existence and uniqueness of the lowest eigenvalue ǫ′′0 and the ground state
|ψ′′

0 〉 in (i) can be proved similarly to the proof of Lemma 14 (i). We rescale the Hamiltonian H ′ by
a factor N (Λ) and then apply [6, Theorem 6.1]. That theorem tells us that ∆′′ = Ω(∆′). Combining
this fact with Lemma 14 (ii), we have (ii). [6, Theorem 6.1] also tells us that there exists

T = O
(N (Λ)2

∆′

(

ǫ′0
∆′

+ 1

))

= O
(N (Λ)2

∆

(

ǫ0 + δ2/(1− δ21)

∆
+ 1

))

, (36)

such that D(|ψ′
0〉 , |ψ′′

0 〉) = e−Ω(t/N (Λ)) for t ≥ T , where N (Λ) comes from the rescaling. Here we
have used Lemma 14 (iv). Combining with Lemma 14 (iii) and the triangle inequality, we have
proved (iii).

Now we can use Corollaries 5 and 6 to bound δ1 and δ2 in Theorem 12, which leads to the
following robustness result:

Corollary 15 (Robustness to truncations). Assume that the Hamiltonian satisfies Assumptions 2
and 3, and let λ̄ = max1≤x≤s 〈|λx|〉 . Then the truncated Hamiltonian H ′′ has a lowest eigenvalue
ǫ′′0 corresponding to a non-degenerate ground state |ψ′′

0 〉. And there exist constants C1 and C2 such
that for any Λ and t satisfying

Λ1−r ≥ (2λ̄)1−r + C1∆
−1polylog(s,∆−1), t ≥ C2N (Λ)2

∆2
, (37)

we have

(i) ∆′′ = Ω(∆);

(ii) The trace distance between |ψ0〉 and |ψ′′
0 〉 can be bounded as follows:

D(|ψ′′
0 〉 , |ψ0〉) = poly(s,∆−1,Λ)e

−Ω
(√

∆(Λ1−r−(2λ̄)1−r)
)

+ e−Ω(t/N (Λ)). (38)

14



We recall that r is the exponent involved in (11b), and that r = 0 for LGTs, r = 1/2 for the
Hubbard-Holstein model. ∆ here is the spectral gap, and s is the size of the region around the cut
that we want to pay special attention to in (21).

If we assume λ̄ = O(1), which we proved for the Hubbard-Holstien model and U(1) and SU(2)
LGTs in Section 5, then to achieve D(|ψ′′

0 〉 , |ψ〉)2 ≤ δ, it suffices to require, for some constant C,

√

∆(Λ1−r − C) ≥ C log
sΛ

δ∆
and t ≥ CN (Λ) log(1/δ) ∨ CN (Λ)2

∆2
,

where ∨ denotes the maximum, which can be satisfied by choosing

Λ = poly(∆−1)polylog(s/δ) and t = Θ(N (Λ) log(1/δ) ∨ N (Λ)2/∆2). (39)

7 Area law

In this section, we establish our main result of an entanglement area law for unbounded quantum
systems. We first recall the notion of AGSP from [6, Definition 2.1].

Definition 16. K is a (σ,R)-AGSP of a Hamiltonian H on a bipartite system consisting of two
parts A and B that has a non-degenerate ground state, if

1. K |Ψ〉 = |Ψ〉, where |Ψ〉 is the ground state of H.

2. ‖K |Φ〉 ‖ ≤ σ for any |Φ〉 such that 〈Φ|Ψ〉 = 0.

3. There exist operators KA
j and KB

j , acting on A and B respectively, j = 1, 2, . . . , R, such that

K =
∑R

j=1K
A
j ⊗KB

j .

An AGSP preserves the ground state, suppresses the excited states, and increases the entan-
glement by a finite amount. The existence of an AGSP onto the exact ground state is known to
imply a bound on the entanglement of ground state. More precisely, Corollary III.4 of [5] states
that if σR ≤ 1/2 where σ is the shrinking factor and R is the entanglement rank of the AGSP,
then the entanglement entropy of the ground state satisfies a bound of order logR. For frustrated
systems the target space of the AGSP becomes perturbed away from the exact ground state(s) as
its construction involves spectral truncations. Analyses of such a situation are undertaken in [6] and
[7]. These tools were simplified in [1], where an “off-the-rack” lemma was stated which generalizes
the one of [5] to perturbed and degenerate target spaces.

Here we make a further improvement to [1] to obtain the cleaner and slightly stronger statement
of Lemma 17 below. For two subspaces Y,Z ⊂ H, we say Y is δ-viable for Z if 〈z|PY⊥ |z〉 ≤ δ for
all unit vectors |z〉 ∈ Z, where PY⊥ is the projection onto the orthogonal complement of subspace
Y. We write Y ≈δ Z if 〈z|PY⊥ |z〉 ≤ δ and 〈y|PZ⊥ |y〉 ≤ δ for unit vectors |y〉 ∈ Y and |z〉 ∈ Z
respectively.

Lemma 17. Let Z be a subspace of bipartite space H = H1⊗H2. Let Z̃n be a sequence of subspaces
of H such that Z̃n ≈δn Z where δn is a sequence such that

∑∞
n=0 nδn = O(1).

Suppose there exist K1,K2, . . . such that Kn is an (σn, Rn)-AGSP with target space Z̃n where
σ = 1

2R . Then the entanglement entropy of any state in Z is O(logR+ log dimZ).

Proof. This follows from the proof of [1, Lemma 4.7] and the following strengthening of [1, Lemma
4.6].
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Lemma 18. Let Z be a subspace of H1 ⊗ H2 and suppose there exists a subspace V ⊂ H1 with
dim(V) = V which is δ-viable for Z. Pick any normalized state |ψ〉 ∈ Z and write the Schmidt
decomposition

∑

i

√
λi |xi〉 |yi〉 with nonincreasing Schmidt coefficients. Then we have the tail bound

∑

i>V λi ≤ δ.

Proof. By the definition of δ-viability, we have

〈z′|(PV⊥ ⊗ I)|z′〉 ≤ δ (40)

for all normalized state |z′〉 in Z. In particular, this implies

〈z|(PV⊥ ⊗ I)|z〉 =
∑

i

λi〈xi|PV⊥ |xi〉 = tr

(

PV⊥

∑

i

λi|xi〉〈xi|
)

≤ δ. (41)

Here, PV⊥ projects onto V⊥ with dim(V⊥) = dim(H1) − V . Now use Poincaré’s inequalities [20,
Corollary 4.3.39] to conclude that

tr

(

PV⊥

∑

i

λi|xi〉〈xi|
)

≥
dim(H1)
∑

i=dim(H1)−dim(V⊥)+1

λi =

dim(H1)
∑

i=V +1

λi. (42)

This establishes the claimed bound.

We apply Lemma 17 to the case of a simple ground state. Since span |ψ1〉 ≈δ span |ψ2〉 where
δ = D(|ψ1〉 , |ψ2〉)2 we obtain

Corollary 19. Suppose there exist K1,K2, . . . such that Kn is an (σn, Rn)-AGSP with target state
|ψn〉 where σ = 1

2R . If
∑∞

n=0 nD(|ψn〉 , |ψ〉)2 = O(1) then the entanglement entropy of |ψ〉 is
O(logR).

The Hamiltonian H ′′ of (24) has spectral norm O(sN (Λ) + T (Λ)). Under the conditions of
Corollary 15, H ′′ has a spectral gap ∆′′ = Ω(∆), so we have

∆′′/‖H ′′‖ = Ω
( ∆

sN (Λ) + T (Λ)

)

.

The Chebyshev polynomial of degree ℓ is bounded by 1 on the unit interval but satisfies Tℓ(1+∆) ≥
1
2 (1 +

√
2∆)ℓ = 1

2 exp(Ω(ℓ
√
∆)), so composing it with linear transformations yields a polynomial f

with fℓ(0) = 1 and |fℓ(λ)| ≤ 2 exp(−Ω(ℓ
√

∆/M)) for λ ∈ [∆,M ]. Picking M = ‖H ′′‖ we get that
K = fℓ(H

′′) is an AGSP with shrinking factor

σ . exp
(

− Ω(ℓ
√

∆′′/‖H ′′‖)
)

= exp
[

− Ω
( ℓ

√
∆√

sN + T

)]

. (43)

Assume λ̄ = O(1). We may pick parameters as in Eq. (39) so that D(|ψ′′
0 〉 , |ψ0〉)2 ≤ δ. Since

N (Λ) = poly(Λ), Eq. (39) implies

Λ,N (Λ), T (Λ) = poly(∆−1)polylog(s/δ). (44)

Eq. (43) then becomes

σ(δ) . exp
[

− Ω
(

ℓ · ∆O(1)

√
s · polylog(s/δ)

)]

.
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H ′′ is a spin chain with a length-s segment such that each qudit on the segment has local
dimension d(Λ) = ΛO(1). The amortization bound from the proof of [6, Lemma 4.2] yields that K
has entanglement rank:

R(δ) = (ℓd)O(ℓ/s+s) ≤ exp(C(ℓ/s+ s) log(ℓΛ)) ≤ exp[C(ℓ/s+ s)
(

log(ℓ/∆) + log log(s/δ)
)

].

Let ℓ = s2:

R(δ) = exp
[

Cs
(

log s+ log(∆−1) + log log(1/δ)
)

]

, σ(δ) = exp
[

− cs3/2 · ( ∆
log(s/δ) )

O(1)
]

. (45)

Theorem 20 (Area law). Under Assumptions 2 and 3 with λ̄ = O(1), the ground state of H satisfies
an area law with entanglement entropy bounded by poly(∆−1).

We remark that λ̄ = O(1) is proved for the U(1) and SU(2) LGTs (Corollary 9), as well as for
the Hubbard-Holstein model (Corollary 10), in Section 5.

Proof. For k = 1, 2, . . . consider s = rk/ log(rk) and δk = k−3, chosen so that
∑

kδk < ∞. Then
(45) yields entanglement bounds and shrinking factors

Rk = exp[C0rk log(∆
−1)], σk = exp[−c(rk)3/2 · ( ∆

log(rk) )
O(1)].

In particular we have Rk = Rk where R = R1. To apply Corollary 19 it remains to ensure that
σk ≤ (2R)−k for all k ∈ N

(2R)kσk ≤ exp
[

k + C0rk log(∆
−1)− c(rk)3/2 · ( ∆

log(rk) )
O(1)

]

.

So we just need the expression in the square brackets to be negative. Dividing the exponent by rk
we see that it suffices to pick r such that for all k,

1/r + C0 log(∆
−1) ≤ c

√
rk ·

( ∆

log(rk)

)C1

.

Pick r = Θ̃(∆−2C1) to achieve this for all k ≥ 1. By Lemma 17 the ground state entanglement
entropy is bounded by:

logR = C0r log(∆
−1) = poly(∆

−1

).

This completes our proof.

8 Conclusions and discussion

In this work we have rigorously established an entanglement area law for the gapped ground state
of 1D quantum systems with infinite-dimensional local Hilbert spaces under natural assumptions
2 and 3 on the local quantum numbers. In particular, our entanglement area law applies to U(1)
and SU(2) LGTs and the Hubbard-Holstein model in 1D, and the result may be adapted to handle
other bosonic and gauge theory models of interest. As an intermediate result, we develop a system-
size independent bound on the ground state expectation value of local observables for Hamiltonians
without translation symmetry, which may be useful in other contexts beyond our area law proof.

Proving the entanglement area law is an important step toward justifying the use of tensor
network methods in classical simulation of quantum systems. The proof techniques also provide
many useful tools for designing a rigorous RG algorithm for these quantum systems, which should
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be investigated by future work. It is also worth considering how the result in this work can be
generalized to degenerate ground state or low-energy states as in Ref. [7].

When studying the entanglement area law scaling in LGTs, we considered the limit where the
lattice size grows to infinity while the lattice spacing remains constant, which is needed to ensure that
the coefficients in the Hamiltonian remain constant. This corresponds to the thermodynamic limit
rather than the continuum limit, where the lattice spacing should also decrease to 0. It remains an
open question whether the entanglement entropy can be bounded in the continuum limit as well. It
would also be interesting to investigate the scaling of other entropic quantities beyond the standard
von Neumann entropy considered here.

Our result relies on the local quantum number tail bound proved in Ref. [31], which in turn
follows from technical tools for analyzing the dynamical simulation of unbounded Hamiltonians
on digital quantum computers. Along this line, previous work such as [3, 23, 25, 32] have found
other applications of quantum simulation techniques, to solving problems in quantum many-body
physics beyond quantum computing. We consider finding further applications of this kind to be very
interesting, as they demonstrate the immediate utility of studying quantum algorithms, while the
building of scalable quantum computers remains a long-term goal.
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[8] M. C. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen. The mass spectrum of the Schwinger model
with matrix product states. Journal of High Energy Physics, 2013(11):1–21, 2013.
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(1+1)-dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states.
Physical Review X, 7(4):041046, 2017. doi:10.1103/PhysRevX.7.041046.
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